
FILLING THE REGION BETWEEN VERTICAL COAXIAL CYLINDERS 

OF AN ANOMALOUSLY VISCOUS FLUID UNDER NONISOTHERMAL CONDITIONS 

V. K. Bulgakov, A. M. Lipanov, and K. A. Chekonin UDC 532.522:518.12 

We offer a calculation algorithm for the flow of an anomalous viscous fluid 
with a free surface in the region between vertical coaxial cylinders. The 
influence of nonisothermal conditions of filling this region is demonstrated 
with respect to the nature of the hydrodynamic process. 

Among the numerous types of non-Newtonian fluid flows exhibiting practical application 
for analysis of the technological processes involved in the treatment of polymer materials, 
of particular importance are those flows with a free surface. Despite the urgency of the 
problem of numerically modeling the complex flows of full nonlinear viscoplastic media, the 
initial efforts along these lines appeared only very recently [I, 2]. This is explained 
by the difficulty of solving the problem because of the nonlinear properties of the fluids, 
the complexity of achieving specific boundary conditions at the free surface, as well as 
because of the nonisothermicity of the process and the existence of anomalies near the solid 
surfaces (the N-effect). 

I. Let us examine the nonisothermal flow of a non-Newtonian incompressible fluid with 
a free surface between vertical coaxial tubes. We will take the equations from the mechanics 
of continuous media with the rheological Shul'man model [3] as the basis of our mathematical 
description of the process. We take into consideration four basic factors which enable us to 
obtain correct results: the nonlinear relationship between the stress tensor and the strain 
rates, the relationship between the rheological constants and temperature, the dissipation 
of the energy of motion, and the slippage that occurs at the solid boundaries. 

Thus the problem of the flow of an anomalous viscous fluid with a free surface, filling 
a given region ~, reduces to the determination of the region ~s over time, as well as of the 
velocity vector V and of the pressure vector p, as well as of the non-Newtonian viscosity 
~, satisfying the following in this region: 
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Fig. i. The shape and boundaries of the occu- 
pied region. 

where B = [~0 1/n + (~pA)l/m] nA-I is the non-Newtonian viscosity [3]. 

The equations are written in a cylindrical coordinate system (x I = r, x s = z) for the 
axisymmetric case. 

The temperature relationship of the rheological parameters is assumed to be of the follow- 
ing form [3-5]: 

~p = ~m (To) exp Pn,, % = % (To) exp Pns. (4) 

On solution of the basic equations (I)-(3), for the boundary conditions we will use: 

i. At the solid boundaries G v (Fig. i): 

% = O, ~ = ~1.  Tw = const. (5) 

2. At the inlet Gin specifies the velocity profile for the steady-state flow of a New- 
tonian fluid in the region between coaxial cylinders [4]: 

D 3 ~ ' 0, :~R~ I -- + - -  In 
\ Ro. / I~ 2 In ~ R2 I~' (6 )  

(~z--I )-' ~ )2lm~ ,v1=0, 
for the temperature 

T/G i~= To. ( 7 ) 

Boundary condition (6) does not correspond to the distribution of the velocity in the steady- 
state flow of the medium with Shul'man rheology; however, because of the smallness of the 
initial hydrodynamic segment the boundary condition (6) exerts no significant influence on 
the hydrodynamic process. 

3. At the free surface Gp (Fig. l), moving in agreement with the kinematic condition: 

~* I =vl, dx._.~...J =v:, (8) 
dt % ap 

the dynamic boundary condition reflects the equality of normal stress arising within the 
medium to the given external pressure above the free surface (Pn) and to the absence of tan- 
gential stress. In our case this condition can be represented in the form 

e3R "~8=-pn, a~.R.~8= 0. (9) 

Here R is the stress tensor, st, s3 are the unit vectors of the local coordinate system (~, q), 
connected to the free boundary. With solution of Eq. (3) we impose on Gp the adiabatic con- 
dition 
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Fig. 2. The influence exerted by the temperature gradient in 
the region of solid boundaries: a) on the location of the 
free surface; b) on the velocity profile of the free boundary; 
1) AT = 60~ 2) 30; 3) O. 

aT ] = O. 
(10)  

To d e t e r m i n e  t h e  p r e s s u r e  we use  t h e  P o i s s o n  e q u a t i o n  which  i s  d e r i v e d  f rom t h e  e q u a t i o n  
of motion (2), with consideration given to the continuity equation (i), and it has the form 
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The boundary conditions for the pressure at the inlet and at the solid walls are deter- 
mined also from the equation of motion (2), in conjunction with the continuity equation (i). 

II. All of the differential equations and boundary conditions are written in finite- 
difference form on a rectangular grid of fixed nodes (20 • 60), covering the entire flow 
region. This is a first-order approximation; In the vicinity of the free surface the basic 
finite-difference equations are solved on an irregular grid. Here, as was demonstrated in 
[6], instead of the boundary-value problem (I)-(i0), we can solve the boundary-value problem 
(2)-(11), but in this case we require satisfaction of the continuity equation at the bounda- 
ries Gin , Gv, Gp (Fig. i), which guarantees conservation of the velocity field within the 
region. As the initial conditions of the problem we specify the fields of velocity, pres- 
sure, temperature, and effective viscosity, obtained through numerical integration of Eqs. 
(2)-(11) for the case of a plane free surface. For the solution of the difference analogs 
of Eqs. (2), (3), and (Ii) we use the adaptive procedure of the SOR method [7]. To reduce 
the errors in determining the position of the free boundary at the surface, we introduce 
particle markers. Their position in the subsequent time interval is determined from the 
kinematic condition (8). The shape of the free surface is approximated by means of cubic 
splines from the found coordinate of the particle markers. 

A fundamental difficulty in solving the problem is the numerical realization of the 
boundary conditions at the free surface. For the solution we will use the method proposed 
in [6, 8], where in order to satisfy conditions (i) and (9) on the free surface they are 
combined for the local coordinate system (~, q) into the following invariant form of the 
equations: 

aN ON S -l- v~ =0,  
�9 a-7.n,+-E+-E2 
OS OS N v~ 

0n 0-7- + - g 7  + -  =0. �9 X l  

(12) 
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Fig. 3. Evolution of the temperature profile in 
the region of the flow for the case in which T O = 
Tw: i) Se = 5"10-3; Re = 2.6"10-6; Pr = 2.5"107; 
n/m = 1.88; 2) 7.6"10-2; 8.6.10-5; 4.2.106 and 
1.38; 3) 0.43; 9.4.10-4; 3.3.10 s and i.i. 

Here N = vN + v$, S = Vq - v$, vq and v$ are the components of the velocity vector in the 
local coordinate system; R s is the curvature radius of the free boundary. To determine the 
implicit functions S and N we construct an additional iteration process whose unique fea- 
tures are to be found in [i, 9]. When the region ~ is filled with a non-Newtonian fluid 
with ~0 > i0 Pa and large mean-mass flow rates Q/S 0 > 1.3-10 -3 m/sec the free surface exhi- 
bits a clearly defined convexity (H/L > 0.5). The numerical calculations showed that the 
best results under these filling conditions are obtained if the approximation of Eqs. (9) 
and (12) is accomplished with an equidistant Gp curve (to the surface), passing through the 
regular nodes of the Euler grid (Fig. i). The normals to Gp are drawn from the points ki' , 
situated on Gp', with an approximately equal interval h < Ax z. The value of the velocity 
components at the points k i' are calculated by interpolation between the values of the local 
fluid velocity in the nodes of the adjacent cells, and these are found in advance by a nu- 
merical method. Having determined the values of N k and Sk, we find the components of the 
velocity vector at the points k i of the free surface 

(v@h = (Nh - -  Sh)12, (v.)k = (N~ -I- Sh)/2 .  (13) 

The components ( v l )  k and (v3)  k a r e  de t e rmined  on t h e  b a s i s  o f  t he  fo rmulas  f o r  t he  t r a n s i -  
t i o n  from the local coordinate system ($, q) to a global coordinate system (xl, x3): 

k sinOk c o s O k  v n . ,  (14) 

The pressure values at the point k are determined from the difference analog of the first 
equation in system (9). To find the values of u, v, and p in the regular nodes of the grid, 
we require appropriate interpolation. 

The algorithm for the solution of the problem thus involves the following: 

on the basis of the difference analogs of Eqs. (2)-(11) we determine the pressure and 
the velocity components within the region in the (n + l)-th iteration, and the value of the 
non-Newtonian viscosity in this case is taken from the n-th iteration; 

from the different analogs of Eqs. (8) and (9) we determine the velocity vector and 
the pressure at the free surface in the (n + l)-th iteration; 

substituting these values of the components of the velocity vector into the finite-dif- 
ference energy equation (3), we determine the temperature field within the flow region; 

from the found temperature field and from relationships (4) we determine the value of 
the limit fluidity and plastic viscosity; 

after convergence of the iteration process, on the basis of the difference analogs of 
the kinematic condition (7) we find the new position of the free surface; 
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Fig. 4. Evolution of the shape of the free surface under the 
action of the force of gravity; i) �9 = 0; 2) 714; 3) 3000; 4) 
5430; a) change in the discharge parameter of the cylindrical 
column of a viscoplastic fluid (h0/r 0 = 1.7) during the time 
(PD = 407 Pa'sec; ~0 = 1.5 Pa; n = I; m = 1.8; p = 1500 kg/m3; 
l)-experiment; 2) theory) (b). 

in the derived region a t we again find the solution of Eqs. (2), (3), and (ll). 

Equations (2)-(-11) were solved in dimensionless form. For our dimensions we have taken 
the distance between the external and internal cylinders L = R 2 - Rl, the mean discharge 
velocity U, the effective viscosity Peff = IT0 I/n + (ppAm)I/m]nAm -I and the initial tempera- 
ture T o of the medium. The criterial relationships that are formed in this case are of the 
form: Re = pUL/Peff , which is the effective Reynolds number; Pr = peff/(pa), which is the 
effective Prandtl criterion; and Fr = U2(gL) -I, which is the Froude number. 

To determine the rate of wall slippage at the solid boundaries G v we employed the em- 
pirical relationships given in [9-12]: 

(Vs'OR, = ~ ~ R, (R~Or R~)kTeloexpPns]'/SU -'. (15) 

Here Rcor, 8p/Sx 3 is the radius of the flow core and the pressure gradient at the solid boun- 
daries, determined through numerical solution of the stated problem; kco , s are the ,empiri- 
cal constants of the medium. 

III. As an example of calculating the axisymmetric flow of an anomalous viscous fluid, 
let us examine the process of filling the region between vertical coaxial cylinders of dimen- 
sions R I = 0.0084 m, R 2 = 0.022 m. The rate of flow for the non-Newtonian medium with rheo- 
logical parameters pp(T0) = 50-5000 Pa'sec; n = 0.85-1.0; m = 0.53-1.6 and T0(T0) = 0-15 
Pa amounted to Q = 1.14.(i0-i~ m3/sec. The empirical constants of relationships (4) 
and (15), as well as the thermophysical characteristics of the medium were taken to be equal 
to b I = 0.021 deg -I, b 2 = 0.0189 deg -I, b 3 = 0.038 deg -I, kco = 2.25.(i01~ I~) N-sec/m s+2, 
s = 0.536, Cp = 1253 J/(kg'deg), % = 0.09-0.46 J/(m-sec.deg). For a more complete description 
of the results from the numerical studies we will make use of the dimensionless complex W = 
Re/Fr and the viscoplasticity parameter Se = T0(PeffAm )-I. 

Figure 2a shows the influence exerted by the temperature gradient in the region of the 
solid boundaries on the shape of the free surface in the case of Re = 1.19.10 -8 , Pr = 3.5" 
107 , Se = 0.7, W = 18. The coordinate origin for x 3 is found at the point of contact between 
the free surface and the wall of the outside cylinder. It follows from an analysis ofthe 
calculations that the increase in the temperature gradient in the region of solid boundaries 
Gv(T 0 > T w) leads to an increase in the tangential stresses and, as a consequence, to a more 
convex form of the free surface. In this case, the profiles of the axial and radial compon- 
ents of the velocity vector on the free surface have a form such as that shown in Fig.. 2b. 

To evaluate the influence of nonisothermicity in the hydrodynamic process due to the 
dissipative heating of the medium in the presence of various rheological parameters, FiB~ 3 
shows the development of the temperature profile over the length of the flow region (T w = 
To). From the results of the numerical calculations it follows that for the above-specified 
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flow regime the dissipative heating is significant only for expanding media: n/m > 1.2, 
~p > 3000 Pa'sec, and c 0 > 13 Pa. It should also be noted that failure to take into con- 
sideration conditions (15) leads to a loss of medium mass up to 15% at x 3 = 3L. 

When the region ~ is only partially filled by media exhibiting a fluidity limit, of 
importance is the determination of the shape of the free surface at the instant at which 
the influx of the following portion begins. Figure 4a shows the process of establishing 
the shape of the free surface under the action of its own weight, after cessation of the 
inflow of the medium with rheological parameters Dp = 3200 Pa'sec, n = 1.0, m = 1.69, c 0 = 
i0 Pa, and a temperature gradient T o - T w = 20~ at the walls. It follows from an analysis 
of the numerical studies that within the interval of time under consideration here the shape 
of the free surface undergoes considerable changes. In this case, a medium which exhibits 
a limit of fluidity, retains its convex shape. However, the influence of the temperature 
gradient on the solid boundaries (within limits of 10~ exerts no significant influence 
on the hydrodynamic process under consideration. 

Thus the nonisothermal conditions of filling a region with an anomalous viscous fluid, 
said region located between vertical coaxial cylinders, and the presence of the H-effect 
at the walls may significantly affect the nature of the hydrodynamic process. Thus, the 
increase in the flow rate (Q) of the medium or of its rheological parameters c0, ~p, n/m 
leads to a more intensive dissipative heating of the medium and to a rise in the pressure 
drop across the wall region, and consequently it also leads to an increase in the slippage 
rate (Vsl). We should take note of their significant influence as early as the initial tem- 
perature gradient T o - T w = 20~ at the walls and for filling regimes with Re > 1"10 -6 when 
Se > 5-10 -3. 

To monitor the accuracy of the calculations, we undertook a test calculation of the 
nonisothermal discharge of a cylindrical column of non-Newtonian fluid when T O = 40~ T a = 
200C (Fig. 4b) as well as calculations at the subsequent grids, and in addition we found 
the value of the difference analog for the divergence of the velocity vector in the cells 
of the grid. These calculations demonstrated the fact that the difference analog of the 
divergence was negligibly small in comparison with the average rate of fluid flow through 
the elementary cell [13-16]. 

NOTATION 

vl, v3, radial and axial components of the velocity vector; c0, fluidity limit; p, den- 
sity; n, m, constants of the rheological Shul'man model; g, acceleration of the force of 
gravity; RI, R2, radii of the internal and external cylinders; eii, strain rate tensor; A = 
(2eijeii), intensity of strain rate; A m = U/L, mean shear velocity; T, temperature; Cp, 

specificheat capacity; %, coefficient of thermal conductivity; a = %(pCp) -l, coefficient of 
thermal diffusivity; Tw, cylinder wall temperature; Ta, temperature of the ambient medium; 
Pn I = b1(T 0 - T), Pn= = b2(T 0 - T), Pn 3 = b3(T w - T), dimensionless complexes taking into 
consideration the relationship between the rheological properties of the fluid and the non- 
isothermicity of the hydrodynamic process; bl, b2, b3, constants of the medium; n = (rt - 
r0)/r0, discharge parameter; ~, time referred to (~p/(pgr0))n/m; r0, initial radius of the 
cylindrical fluid specimen; rt, maximum radius of the specimen at the given instant of time; 
H, maximum convexity of the free surface; Axl, interval of the finite-difference grid in 
the radial direction; T = (T - T0)/T 0. 
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AN ENERGY-BASED JUSTIFICATION FOR AND A COMPARISON OF THE METHODS 

OF TECHNICAL-ECONOMIC AND ENERGY OPTIMIZATION OF CONVECTIVE 

HEAT-EXCHANGE SURFACES 

N. M. Stoyanov UC 536.24:66.045.1 

Calculation relationships are offered and a comparison is carried out of the 
energy and technical-economic optimization of these methods, and the limita- 
tions imposed on the latter are also established. 

We currently have on hand a tremendous volume of theoretical and experimental material 
dealing with studies into the convective exchange of heat in the forced motion of coolants 
through channels exhibiting a variety of surface shapes. Among the most urgent problems 
are those connected with selection of the most effective heat-exchange surfaces, as well 
as the determination of their optimum operating conditions in the nominal regime. 

The most objective comparison of convective heat-exchange surfaces and their optimiza- 
tion, in our opinion, is offered by the energy method which essentially involves determining 
the relationship between the intensity of the convective heat exchange and the specific ex- 
penditures of power on the propulsion of the coolant through the channels of the heat-ex- 
change surface, and namely: 

These specific expenditures can be determined from the relationship 

.F, " (2) 

If for purposes of calculating the coefficient $ we use the theoretical or empirical rela- 
tionships of the form 

A (3) 
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